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ABSTRACT

In recent years, the number of users in social networks has grown substantially, and more data-intensive
applications have been developed. This creates a demand for the ability to mine large-scale graph data
more efficiently, so that the information mined can be maximized (e.g., mining social relationships
between people). However, the direct publication of the original graphs leads to potential leakage of
users’ privacy. Therefore, graph anonymization techniques are often utilized to process the original
graphs. A key challenge of it lies in the balance between anonymity and usability. In this paper, we intro-
duced the idea of graph auto-encoder, a fundamental element in graph neural networks, and proposed
the Differential Privacy Deep Graph Auto-Encoder (DP-DGAE). Our main idea is to convert the anonymous
graph publishing problem into a privacy-preserving problem for generative models, and optimize the
models in terms of both privacy and usability using a multi-task learning approach. Theoretical analysis

and experimental evaluations show that the DP-DGAE achieves anonymity while ensuring usability.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, by modeling user relationships in social networks in
the format of graphs, a large pool of structured data has been gen-
erated. Such open graph (network) data provide the best materials
for data mining and data analysis [1,2]. Data companies derive
enormous potential value from data by releasing and sharing graph
data with research facilities and enterprise partners, which can
assist decision models in applications including social, business
and transportation, etc., through improved advertising, recommen-
dations, etc. [3,4].

However, since graph data contain a wealth of information, it
can lead to leakage of users’ privacy, as well as their relationships.
What is more, even if the graph is anonymized when it is pub-
lished, it is difficult to guarantee the safety of users’ privacy under
collaborative attacks [5,6]. For such reasons, traditional privacy
protection methods such as differential privacy and other tech-
niques are often used [7]. However, these schemes do not make full
use of the existing empirical knowledge in graphs to obtain poten-
tial information, while deep learning uses multiple nonlinear
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layers of transformation to perform representation learning, and
is hence more powerful in data abstraction [8]. Recently, Graph
Neural Networks (GNNs) have extended deep neural networks to
graph-structured data by jointly encoding network structure and
node features, demonstrating a powerful ability to learn node rep-
resentations. They have been proven to have powerful capabilities
in tasks including link prediction [9], node classification [10], and
graph classification [11,12]. However, due to overfitting in deep
learning, it makes the model implicitly remember the details of
training data, and there is a risk of privacy leakage. Therefore,
many methods that incorporate differential privacy into deep
learning have recently been proposed. These schemes hide or alter
sensitive features of the training dataset while maintaining the
usability of further learning in the deep learning model. However,
a pressing problem is how to perform privacy protection in the
graph generation neural network model so that the published
graphs have high usability while protecting the privacy of the links.

For example, in Fig. 1, a social networking service provider
encouraged researchers to study the relationship structure of users
in its network. As shown in Fig. 1(a), the data publisher first
removes the users’ tags and then releases the network to the pub-
lic. However, when the attacker has the background knowledge of
the current social network, such as the number of friends of the
target user and the social information of the friends, the attacker
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(a) Anonymized original graph

Neurocomputing 521 (2023) 113-125

(b) DP-DGAE gerenated graph

Fig. 1. A pair of anonymized and generated graphs.

can use the degree distribution of the nodes and the neighbor
information of the target node to accurately identify the target
node in the published graph (e.g., user M as the only node with
degree 5 and the degree of its neighbor users are 1,1,2,3 and 4,
respectively, and the user N as the only node with degree 2 and
the degree of its neighbor user are 2 and 4, respectively.). As a
result, an attacker can identify M and N and obtain connection
information or mutual friend information between them, which
seriously compromises users’ privacy and poses a potential fraud
risk.

In this paper, we implement the e-differential privacy preserv-
ing in the graph generation neural network model. When the deep
graph auto-encoder is used for a binomial classification task, the
generated graph can satisfy the e-differential privacy. We proposed
a novel e-Differential Privacy Deep Graph Auto-Encoder (DP-
DGAE) that uses the functional mechanism (FM) [13] to perturb
the objective function of the graph auto-encoders to preserve the
e-differential privacy. At the same time, multi-task learning is used
to make the model achieve a balance between privacy and usabil-
ity. While meeting privacy requirements, it retains the structural
characteristics of the published graph and its good performance
in link prediction. As shown in Fig. 1(b), our model trains on top
of the original graph and publishes the generated graph. In order
for a downstream data mining task to produce results similar to
the original graph, we require the generated graph to be similar
to the original graph in terms of global structural availability,
which can be measured by common graph properties (e.g., graph
(b) has the same degree distribution as (a)). Also, in the original
graph, based on the number of common neighbors, users M and
N have a large probability of being connected in the future, which
can also be reflected in the generated graph. For privacy protection,
although an attacker may be able to re-identify the target node by
degree in the generated network, the structural information of the
target node as well as its neighbors has been changed, so the
attacker cannot accurately obtain the link information between
the target node and its neighbor nodes. To evaluate its perfor-
mance, we apply the DP-DGAE in real social networks. Experimen-
tal results show that the DP-DGAE model achieves a good balance
between usability and anonymity.

The main contributions are summarized as follows.

e We apply differential privacy to the output layer of the graph
generation model and transfer an anonymous graph publishing
problem into a privacy-preserving problem of the deep graph
generation model.

e We use multi-task learning to simultaneously learn the per-
turbed objective function and the original objective function
and cast the multi-task learning problem as a multi-objective
optimization problem with the overall objective of finding a
Pareto optimal solution so that the model can strike a balance
between privacy and usability.
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e Aiming at the zero mean and high variance of the differential
privacy noise distribution, we design a gradient modification
method to improve the problem of ignoring a certain objective
function when the traditional multi-task learning method is
applied to deep learning with differential privacy.

2. Related work
2.1. Differential privacy

Differential privacy [7] has become a prevalent privacy model
because of its good mathematical properties. It is used to quantify
the notion of "indistinguishability” of neighboring databases. There
have been extensive researches on enforcing differential privacy to
particular analysis tasks in social networks, e.g., graph data pub-
lishing [14,15], track privacy protection [16], collaborative recom-
mendation [17], and transmitting information [18] in social
network analysis. Recently, the privacy issues exposed by the rapid
development of deep learning have led to the application of differ-
ential privacy to deep learning as well, e.g., [19,20].

2.2. Graph neural network

Graph neural networks efficiently obtain a representation of
nodes by aggregating network structures as well as features
[21,22]. In this way, the feature information of nodes is propagated
through the network topology, and the information obtained by
node aggregation generates node embeddings, which are then used
for the next tasks such as node and graph classification [11,12], link
prediction [9], and recommendation [23,24].

2.3. Differential privacy deep learning mechanism

Deep learning is widely used because of its powerful data
abstraction capability, but there is a risk of privacy leakage because
of the existence of over-fitting, so the model implicitly memorizes
some details of the training data [25]. Therefore, there is a growing
trend to include differential privacy in deep learning models to
protect the privacy of the models as well as the data [19]. Existing
differential privacy deep learning schemes can be classified into
three categories based on where differential privacy is deployed:
input layer [26], hidden layer [20,27], and output layer [28].

The existing methods of adding differential privacy to deep gen-
erative models [28] are primarily designed to process data with
regular(Euclidean) structures such as images and text. However,
unlike images and other grid-based data, graphs have flexible
structures and arbitrary node orders, and traditional deep genera-
tion models do not capture the structural information of graphs
well. Therefore, the existing method of adding differential privacy
to deep generative models [28] cannot be directly used for graph
data. Meanwhile, for existing differential privacy graph generation
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Fig. 2. The structure of Graph Auto-Encoder(in the red box) and Differential Privacy Graph Auto-Encoder.

models such as DPGGAN model [27] which does not make suffi-
cient use of the attribute information in the graph, while adding
noise to the gradient because of the small privacy budget will limit
the number of training epochs, leading to lower utility and the
model is limited by the number of training epochs.

3. Preliminaries
3.1. Notations

We focus on semi-supervised graph link generation with differ-
ential privacy properties in an attributed graph G = (A, X), where
A e R™" is the symmetric adjacency matrix with n nodes and
X € R™¢ is the node feature matrix, where d is the dimension of
node features. Specifically, A;j =1 represents there is an edge
between node i and j, otherwise, A; = 0.

3.2. Differential privacy

Definition 1 (e-Differential Privacy [7]). A randomized algo-
rithm .7 is e-differentially private if and only if for any two data-
bases D; and D, differing at most one tuple, and for any output O
€ Range(.«7),

Pri.«/(Dq) € 0] < e x Pr[.«/(D,) € 0] (1)

This method hides the difference of any tuple from an adversary.
We can control the information leakage caused by the difference
between two neighboring data sets by controlling the privacy bud-
get €. The smaller the ¢, the higher the privacy requirements. We
can achieve differential privacy through the Laplace mechanism
[7]. In Laplace mechanism, for any two neighboring databases D,
and D,, the sensitivity of a function f is defined as
Af = maxp, p,||f(D1) — f(D2)]]. Given a particular function f and cal-
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culating its global sensitivity, the noise # can be drawn from a
Laplace distribution with p(x|4) = ;. e ¥/* probability density func-
tion, where 1 = Af/¢, according to different privacy budget €. By
injecting noise # into the output of f(D), it can ensure the e-
differential privacy.

3.3. Functional mechanism

The functional mechanism [13] achieves e-differential privacy
by releasing parameters o that minimizes the objective function
fx(w) after perturbation. For the objective function fy(w), assume
that the model parameter w is a vector containing d-dimensional
values wy,...,wy. We use the product of these d-dimensional
vectors to construct an nth degree polynomial ®, = {@{" - w}?

™| m; = n}. According to Stone-Weierstrass Theorem [29],
we can rewrite fy(w) using the polynomial form of w, for some
N € [0, 00}, i.e., f(ti, ) = Zfzozd)emllz(b[,d;(w) where A4, € R denotes
the coefficient of ¢(w) in the polynomial. Zhang et al. [13] devel-
oped an approximation polynomial form based on Taylor expan-
sion [30], which is used to solve the calculation problem of the
polynomial form of the objective function including the term of
unbounded degree. For instance, given the cost function f(t;, w),
assume that there exist 2m functions f,,...,f,, and g;,...,&, such
that f(t;, w) = >"°1fi(g(ti, w)), and each g(t;, w) is a polynomial
function of w, where m € N is the number of functions f and g.
By analyzing the above decomposition of f(t;, ), we can know it
is feasible to apply Taylor expansion to each f,(-). Thus, the obtain
the polynomial form if the objective function f(X, ) i.e.,

\X\moc

fx(w o) —z)f

(t;, (2)

i=1 [=1 R=0

where each z is a real number.
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We perturb fx(w) by injecting Laplace noise Lap (2) into its coef-
ficients 4,, and then derive the model parameter @ that minimizes
the perturbed function fx(w), where the global sensitivity A of
fx(o) satisfies the following inequality:A < 2 max ZL] S gea 2oty

3.4. Graph auto encoder

By training the graph auto-encoder [31](Fig. 2), the input fea-
ture matrix X and adjacency matrix A can be encoded into some
intermediate representation h € R™™, where m is a constant, and
the reconstruction of the adjacency matrix A is completed by
decoding this intermediate representation. Given the reconstruc-
tion matrix A, the negative log-likelihood of the reconstruction
process is,

RE(AL, W) = —logP(Ai\ﬁi, W)

= *zd:@ij logA; + (1 - Ay) log(] 7,7\1.1.)) 3)
j=1

where W is a weight matrix, We demonstrate this model using a
graph convolution network (GCN) [10] as encoder and decoder.

h= a(ﬁxw), A= a(EhWT), (4)

() is the sigmoid function and A = D’%(A +1)D? is the symmetri-
cally normalized adjacency matrix. We can sum all the node topol-
ogy reconstruction losses RE(A;, W) in the graph to get the loss
function on the whole graph A:

()

we can stack multiple graph auto-encoder to produce a deep graph
auto-encoder. The output layer of the deep graph auto-encoder
includes a single binomial variable to predict A. The reconstruction

matrix A is fully linked to the hidden layer h, through the weight
matrix W, € R™", where k is the number of hidden layers in the
deep graph auto-encoder. We use the sigmoid function as an activa-

tion function of A, ie., A= 0(Eh(k)W(k)). let Ar be the adjacency

matrix used to train the model, the cross-entropy error function is
given by

n n
C(Ar,0) = = > "(aylogay + (1 — az)log (1 — ay)) (6)
i1 j=1
where n is the number of nodes in Ay, a and a are the variables in Ay
and A respectively.

Algorithm 1: :Pseudo Code of a DP-DGAE model

1: Construct the feature reconstruction function RE(X, W)

2: Derive polynomial approximation of features
reconstruction function RE(X, W), denoted as I/QTE(X, W)

3: The function RE (X, W) is perturbed by using functional
mechanism (FM), the perturbed function is denoted as
RE(X, W)

4: Compute W = arg minywRE(X, W)

5: Differential Privacy Graph Auto-Encoder stacking
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a (continued)
Algorithm 1: :Pseudo Code of a DP-DGAE model

6: Derive and perturb the polynomial approximation of
feature-to-structure reconstruction cross-entropy error
C(Ar, 0), the perturbed function is denoted as C(Ar, 0)

7: Calculate the Pareto optimal solution «

8: Compute 0 = argmin, |oC(Ar, 0) + (1 — a)C(Ar, 0)}

9: Return 0

4. Model:DP-DGAE

In this section, we will discuss the deep graph auto-encoder
model with differential privacy preservation, namely the DP-
DGAE model. Our algorithm for building DP-DGAE consists of eight
steps(Algorithm 1). We use the functional mechanism to enforce ¢-
differential privacy in our DP-DGAE model. Therefore, in the first
step, we construct the feature reconstruction function RE(X, W).
In the second step, we derive a polynomial approximation of fea-

tures reconstruction function RE(X, W), denoted as I/QE(X, W). In
the third step, we first calculate the global sensitivity for the graph
auto-encoder, and then use the functional mechanism to perturb
the polynomial approximation of the feature reconstruction func-
tion I/QE‘(X7 W). The feature reconstruction function after the per-
turb is denoted as RE(X,W). In the fourth step, we pre-train the
graph auto-encoder to obtain the locally optimal perturbed param-
eters W. That results in differential privacy graph auto-encoder
(DP-GAE)(Fig. 2). In the fifth step, we stack DP-GAE to construct
the DP-DGAE(Fig. 3). Before each stacking operation, we need to
normalize the representation of the current layer, so we introduce
a normalization layer,denoted as § (Fig. 3). In the sixth step, in
order to complete the reconstruction of the graph topology, we
need to derive and perturb the polynomial approximation of the

) h,-j — min;

="
(maxj - mmj) \/m

h;; — min

Npp=— ¢ T
Tttt 8 P (max;—min) -\/m
h = A~bl Wl o _‘-_-_---_-_--_-—-_---_-_-E-_-_-_-_-_-_:-__l “.‘_ _‘.
_____________________ - -.‘;‘ _ hy; — min \
) . & (max; — min;) - \/;
h=AXW, -~

Fig. 3. The structure of Differential Privacy Deep Graph Auto-Encoder.
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cross-entropy error C(Ar,0), denoted as C(Ar,0). In the seventh
step, we use multi-task learning to consider both C(Ar,0) and
C(Ar, 0) loss functions and transfer a multi-task learning problem
into a multi-objective optimization problem to obtain a Pareto
optimal solution « that allows both objective functions to simulta-
neously decrease in the minimize direction. In the eighth step, the
back-propagation algorithm acts on all the parameters of DP-
DGAE. In our framework, the parameters and outputs of the DP-
DGAE model are preserved by e-differential privacy. Since the
GAE underlying our model is a graph generation model, we can
make the graph generated by the DP-DGAE model satisfy differen-
tial privacy. First, in order to add noise to the features in the pre-
training phase and complete the reconstruction of the features,
let us construct the feature reconstruction function as follows.

4.1. Feature reconstruction

For the feature reconstruction function RE(X, W), referring to
Eq. (3), we use the same inputs A and X. We use the input feature
matrix X to replace A in the reconstructed loss function to evaluate
the reconstruction process of the feature matrix.

RE(X;, W) = —logP (xl-p?,-, W>

)

d

= 72<X,-j logXij + (1 —Xy) log(l
=

We use GCN as encoder and decoder.

h= o—(Awa)7 X = a(Ath) (8)
We can sum all the node feature reconstruction losses RE(X;, W) in
the graph to get the loss function on the whole graph A:

n
W) = RE(X;,W)
i=1
n d

>

i=1 j=1

RE(X,

[X,-j log<1 +e*X“in> + (1 —Xj) log (1 + e;“fwfﬂ
9)

After obtaining the feature reconstruction loss function, we use the
Functional mechanism to add differential privacy to the feature
reconstruction loss function, adding noise to the features of the
nodes can be achieved by using the feature reconstruction loss
function as the loss of the model in the pre-training phase, and
retain the learned affine matrix W to initialize the weight matrix
in the topological reconstruction phase.

4.2. Polynomial approximation

For the feature reconstruction function RE(X, W), referring to

Eq. (9), we apply the Taylor expansion to it. Vj € {1,...,d}, let
f1j.f2j, and g;, be three functions defined as follows:
& (Xi, Wj) = AiW;;
f1i(z1) = Xilog(1 + e75); (10)
fai(z) = (1 —Xj)log(1 + e%);
Then, we have
d
REXi, W) = (F1;(8 (Xi, Wj)) + 5 (g (X0, W) (11)
=
By Eq. (2) and setting z; = 0, we have:
N X| d 2 o f (0) - R
_ ] AL
RECX,W) =) 33> o (Ath,) (12)
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Because using Taylor expansion will introduce infinite sums, we
simplify the private data reconstruction process by proposing an
approximation that reduces the degree of summation by truncating
all polynomial terms with order larger than 2 in the Taylor series of
Eq. (12) to obtain an objective function that contains only low-order
polynomials:

X d

5 (iffj”w))ﬁhfwj
i=1 j=1 =1

+<Zf’f © )><Ahw) )

=1

(2o

(13)

We truncate the Taylor series with an order larger than 2 so that the
approximate loss function is in quadratic form and is a convex func-
tion, so the reconstruction process becomes a convex optimization
problem with a theoretical global minimum, avoiding the risk of
falling into a local minimum, and also ensuring that the approxi-
mate loss function can choose to use second-order derivatives to
assist the optimization algorithm in accelerating the optimization.

4.3. Perturbation objective function

In this section, we add the Laplace noise determined by the
functional mechanism to the polynomial coefficients of the objec-

tive function RE (X,W). The perturbed function is denoted as
RE(X,W). Then we derive the model parameter W that minimizes

the perturbed function RE(X, W). Before that, we need to know the
scale of Laplace noise distribution, so we need to explore the sen-

sitivity, denoted as A, of REonX. According to the definition of Dif-
ferential privacy’s sensitivity, we can obtain the following lemma.

Lemma 1. Suppose X and X' be any two neighboring datasets,

RE(X, W) and RE (X', W) are the reconstruction objective functions of
the graph auto-encoder on these two neighboring datasets, respec-

tively, then the global sensitivity of RE on any two neighboring

datasets is as follows:
|| <d|z+ 1p
= 4

d 2
_ 5 (R)

A= 2m)ngZ\|ij (14)

where z is the dimension of the hidden layer.

=1 R=0

Proof 1. Assume that X and X' differ in the last tuple. Let x, (x;) be
the last tuple in X (X). Then, A= Zf:lZ;:OHZX,»eXZJ(Q)_
legx%;’“n =Sl Sho|an - A0 we
jxn Zl 1fI

can show that ;] ,)

can show that

(0) = Xnilog2 + (1 — xyy)log2 = log2 Similarity, we

= log2. As a result, A} = A ,. Therefore

A= ZJ By 0‘ = Z}jzlszl‘ T JX,, Zf
Yk 1( ) < 2 max Zj{j:lzzR:]‘ A\l <2 max [Zj:]
1- xj)zezlAhxe + zjﬂ (§CeqAeAhsg)] < 2(3d x 2+ }d x 22) =
d(z+%2%)

where hy, is the state of e-th hidden variable derived from the tuple
x, ie, h= O'(;\XWT).

R)7

4.4. Perturbation sigmoid layer

We use the sigmoid function as the activation function for the
output layer, focusing on a binomial prediction problem. This layer
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contains a prediction matrix in which the probability values a; rep-
resents the probability of connecting edges between nodes i and j.
Therefore, we choose the cross-entropy loss function given in Eq.
(6) to deal with this task. The e-differential privacy of the sigmoid
layer can be guaranteed by obtaining a polynomial approximation
of the cross-entropy loss function and then perturbing it using the
functional mechanism. Eq. (6) can be approximated as

S IO )

i=1 j=1 I=1 R=0
where W, is the weight matrix of the k-th layer and by, is the hid-
den variables of the k-th layer input, n is the number of elements in
the adjacency matrix.
In the following lemma, we will give the global sensitivity of the

C(Ar,0) (15)

topology reconstruction function ﬁ(AT, 0) over the target topology
Ar.

Lemma 2. Suppose Ar and A; be any two neighboring graphs
(network). Assuming that topological reconstruction using graph
auto-encoder on neighboring datasets Ar and A} corresponds to the

’

objective functions €(AT, 0) and 6( 1, 0), respectively, then the global

sensitivity of the objective C over the target topology Ar is as:

Ac:n<|b 141 \fm)

where [,

(16)

| is the dimension of the hidden variable in T,

Proof 2. By applying Lemma 1, we can compute the sensitivity Ac of
E‘(AT, 0) on the set of graph (network) edges Ar as follows:

By | 3
Ac < 2max, [Z}L] (% - aj)z el A[)ae K T Z] 1( Ze,qbae(k)baq(k))] <
n(|b(,<)| +}—1|b(,<)|2), where Dy, is the state of the e-th hidden vari-

able at the k-th normalization layer. [b | is the number of hidden
variables in b,.

After computing the sensitivity Ac, we can derive the perturbed
objective function denoted as C(Ar, 0). The back-propagation algo-
rithm is used to train all the parameters in the Differential Privacy
deep Graph Auto-Encoder (DP-DGAE), aiming to optimize the func-
tion C(Ar, 0) to ensure that the output (graph) of the DP-DGAE sat-
isfies Differential Privacy.

4.5. Approximation error bounds

We give the error due to our approximation approaches
I/?E(X, W) and C(Ar,0) in the following theorem. The error of
approximation is influenced by the objective function as well as
the dimensionality of the datasets. It can be learned from the fol-
lowing theorem that the average error due to approximation is
acceptable.

Theorem 1. Given the reconstruction functions ﬁ(x, W) and

C(Ar,0) and their approximate forms RE(X,W) and C(Ar,0), the
average error of the approximations is given as follows:

~ =\ o 2(e? —e)

RE(X,W)—-RE(X, W) < ——% 17
RE(x.W) - RE(X. W) <S50 (17)
~ = ~ 2(e? —e)

C(Ar,0) —C(Ar,0)] < x 1 18
C(An.0) =E(Ar0) | <57 (18)
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where W = argmmWRE(X W)
C(AT 0), 0= argmmUC(AT, 0).

= argmmeE(X W), 0 = argmin,

Proof 3. Let W =arg minWﬁE"(X, W), W = arg minW}/QI\E(X, w),
U = maxw (EE‘(X, W) — RE(X, W)) and  S=miny (EP;(X, w)—
I/QT:‘(X, W)). We have that:

U RE(X, W) - faE(x, W) and YW :S < RE(X,W")—

RE (X, W). Therefore, we have that:
Eé(x, W) _RE(X,W")<U—-S+ (RE X, w) RE(X, w*))
In addition, I@?(X, W) - I/@?(X, W*) <0, so:
EE(X, W) ~RE(X,W")<U-S.
If U= 0and S <0 then we have:
|EE(X, W) ~RE(X,W")|<U-S
The error depends on the maximum and minimum value of

EE(X, W) — I/QI\E(X, W). To quantify the magnitude of the error, we first

rewrite  RE(X,W) - RE(X,W)  as:RE(X,W) — RE(XX,W) = 21,
o0 f b R

(Z‘XHZI 1 Re3 ( ) (glj(xnw') lej) )

To derive the minimum and maximum values of the function
above, we look into the remainder of Taylor Expansion for each j.
Let z € [z; — 1,z; + 1]. According to well-known result (Apostol

1967), X (RE(X wj) — I/QE(X, Wj)> must be in the interval:

) 3
{Z[ mmzfu (6)(4 z,,) 5 1naxzjfltl3)(g)(zjle,) ]

)

If Z rnaxzf,] (zj)(z, z,,) > 0 and Z[ minzjf;j?)(z)(zi—zu.)a

have that:
i (RE(X W;) - RE(X, W,-)) < Zf:1 > maxzjf;f](ZJ)(Zjizb)zgmmz’féﬁ)<Zj)(zﬂv)z
This analysis applies to the case of graph auto-encoder as

< 0, then we

follows. First, for the functions fy;(z) = x;log(1+e™%) and
f2i(z) = (1 —x;)log(1 + €%), we have:
(3) x,j(el —e J) _ efi(ei-1)
fi (z) = <1+e2> fZ] (z) = (1 -xy) (e 9)
It can be verified that'
minz.f@) (z) = (1+e =<0, maxzflj (z) = ﬁ:; >0, minzjfgf) (z) =
(§‘+Z)3 <0, maxzf ( ;) = (;‘:53 > 0.

Thus, the average error of the approximation is at most

RE(X.W) ~ RE(X. W) < [2x (56 — 20| <8 =5
o) -2l < o (55 2] -3 oo

Theorem 1 shows that when reconstructing edges using node
features and topological information, the error in Eq. (18) is almost
negligible compared to the number of edges in the graph. This pro-
vides a guarantee that our model can be applied on large graph
datasets. And we inject Laplace noise into the coefficients of the
quadratic polynomial, which may lead to unbounded objective
function after approximation, we will discuss the method of avoid-
ing unbounded noisy objective function.

4.6. Avoiding unbounded noisy objective functions

We use the Functional mechanism to add Laplace noise to the
coefficients of the objective function, which may lead to an
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unbounded objective function. We constructed a convex objective
function by truncating the terms of order greater than 2 in the Tay-
lor series during the previous polynomial approximation, but the
addition of noise may make the current objective function without
any optimal solution. We change the quadratic polynomial into the
matrix form C(Ar, 0) = 6"M0 + a6 + f and we denote the form after
adding noise to the coefficients as C(Ar,0) = 0"M"0 + o0 + . We
can then ensure that E(AT, 0) remains bounded after adding noise
by making M symmetric and positive definite. [13].

We can achieve the symmetry of M* by adding noise to the
lower triangular part of the matrix and copying the lower triangu-
lar part to the upper triangular part of the matrix. For the positive
definite let C(Ar,0) = w"™M"0 + o*0 + §* be the symmetrized noisy
objective function. In addition, C(w) is unbounded at least one
eigenvalue of M” is not positive [32]. Therefore we need to elimi-
nate the non-positive eigenvalues in M".

Let VTAV be the eigen-decomposition of M*. Accordingly,

C(Ar,0) = OT(VTAV)() o (vTv)o +p (19)

If the i-th diagonal element in A is non-positive, then we will
remove this element from A. Also, to ensure that the matrix dimen-
sion match, we will remove the element of the i-th row in V, which
we denoted as V'. The noisy objective function then becomes

ClAr,0) = 0" (VIAV )0 +a (VIV)0+ (20)

Adding Laplace noise to the coefficients results in non-positive ele-
ments in A. However, removing these non-positive elements from A
does not have a significant impact on the learning process and the
ability of the model to extract useful information. [13] Thus, the
objective function in Eq. (20), obtained by removing the non-
positive elements from A, avoids the problem of unboundedness
while still leading to accurate model parameters.

4.7. Multi-task learning

In this model, we learn both tasks C(Ar, ) and C(Ar, ). By opti-
mizing the former we can make the output of our model have a
similar topology to the original graph while having better perfor-
mance in link prediction, and optimizing the latter ensures that
the output of our model satisfies the e-differential privacy. How-
ever, these two objective functions are mutually constrained and
we cannot use the traditional approach of using a linear weighted
combination to optimize both objective functions at the same time.
Sener et al. [33] cast multi-task learning as multi-objective opti-
mization, with the overall objective of finding a Pareto optimal
solution. Because the method proposed by Sener et al. [33] does
not consider the variance of the gradient distribution, but the dif-
ferential privacy will maintain the mean of the original distribution
when performing privacy protection, which will have a greater
impact on the variance of the original distribution. Therefore, the
problem that needs to be solved in this solution, so we propose a
gradient distribution magnitude regularization coefficient / for dif-
ferential privacy.

Theorem 2. Given two empirical loss C(Ar,0) and C(Ar,0). We can

derive the gradients V,C and V,C of the shared parameters 0
corresponding to the empirical loss of task 1 and task 2. We first
calculate the coefficient /, which is used to regularize the two gradient
distributions to the same order of magnitude:

)= a(V,0) /a(vﬁf) (21)

where a represents the standard deviation of the distribution.
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Then we use the 1 to regularize the gradient distribution
VoC =V,C/\ the optimization problem can be defined as
MiNye01)||cVoC(0) + (1 — o)V,C(0)]|3, which is a one dimensional
quadratic function of « with an analytical solution:

) (vﬂf(e) - v(,C(e))Tv(f(e)
5= L /A (22)
[IVeC(0) — V4 C(0)]I3

1
o

where ['L; represents clipping to [0,1] as
[a]+_|T = max(min(a, 1),0),V, denotes the gradient of the shared

parameters 0.
After computing the «, we can use the gradient descent on the

shared parameters 0 =0 — n(ocVHC(AT, 0) + (1 — 2)V,C(Ar, 9)) to
optimize both objective functions.

5. Experiment

In this section, we will measure the effectiveness of the DP-
DGAE model in real social networks. We will start by introducing
the datasets used in our experiments. Then we will detail the
experimental settings of the model. Finally, we will present the
usability of DP-DGAE under different privacy budgets €, as well
as the comparison with the state of art models in terms of link pre-
diction accuracy.

5.1. Datasets

We use three public datasets for experiments and the statistics
of the datasets are shown in Table 1. We choose the same dataset
splits as in kipf et al. [31] and zhang et al. [34], randomly sample 5%
of the total number of edges as the validation and 10% for testing.

5.2. Experimental settings

In our model, we use three-layer GCNs as the encoder. Kipf et al.
[31] experimentally concluded that adding input features to the
model can significantly improve the predictive performance of
the model across datasets, while they noted that using the inner
product decoder may push the embedding away from the zero-
center. So we use four-layer GCNs as the decoder for link predic-
tion to get a more powerful decoding performance. The introduc-
tion of differential privacy in deep learning alleviates the
problem of overfitting [35]. For Differential Privacy related
hyper-parameters, we use Eq. (14) and Eq. (16) to calculate the glo-
bal sensitivity of the objective function, while we observe the
availability of the released graph for different privacy budgets by
making € vary from 0.1 to 10. We use the initial learning rate of
0.1 and decay every 2000 epochs to half the original. In addition,
the weight decay € {le — 8,1e — 10,1e — 9} and clipping hyper-
parameter < [0.8,12].

All experiments are done with one GeForce RTX 3090 GPU and a
24-core 2.4 GHz CPU. To measure the complexity of our proposed
method, analogous to the operation of Chen et al. [36] we use our
method DP-DGAE to compare with the graph generation model
GAE proposed by Kipf et al. [31] in terms of training speed as well

Table 1
Dataset statistics.
Dataset Nodes edges Attributes
Cora 2708 5278 1443
Facebook 1034 26794 576
IMDB 17577 287075 19
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GAE
Hmm DP-DGAE

Sec./epoch

Cora Facebook IMDB
Fig. 4. Per-epoch training time in seconds for DP-DGAE and GAE on different

datasets.

Table 2
Memory consumption of DP-DGAE and GAE during training.
Cora Facebook IMDB
GAE 1.68Gib 1.46Gib 14.56Gib
DP-DGAE 1.96Gib 1.51Gib 22.63Gib

as memory consumption. See Fig. 4, the bar heights indicate the
per-epoch training time, in the log scale. As detailed in Fig. 4, it
can be seen that our scheme is mostly in the same order of magni-
tude in terms of training speed compared to non-private graph
generation schemes, thus, it can be shown that our method can
maintain a better efficiency in terms of privacy graph generation.
Although space complexity is not our primary concern, we still
record the memory consumption of DP-DGAE and GAE during
training, as shown in Table 2. Compared to GAE, DP-DGAE has a
limited increase in memory consumption in exchange for privacy
guarantees for the GAE at an acceptable cost.

5.3. Preserving global structures

We compare the ability of DP-DGAE to retain the global net-
work structure under different privacy budgets. The trained model
is used to generate a new graph and the differences between the
generated graph and the original graph are observed in terms of
the statistical values of the graph structure.

Table 3
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In Table 3, we observe the variation of the structural usability
metrics AVD(average degree), ACC(average cluster), and APL(aver-
age shortest path) under different privacy budgets. We can see that
with the reduction of the privacy budget, most of the metrics are
not much different from the original values. It can be seen that
adding differential privacy to the output layer of the graph neural
network for privacy graph generation can better preserve the glo-
bal availability of the graph. We add noise to the coefficients of the
loss function, which can be approximately interpreted as adding
noise to the input of the model in the optimization process. The
Laplace noise we use has the property of zero mean, and the gap
between the structural usability metrics of the privacy graph and
the original graph may increase as the privacy budget decreases,
but the mean of the gap will stabilize as the number of experi-
ments increases. In Table 4, we derived the overlap between the
anonymized graph and the original graph in terms of the EC(the
number of original edges), Top-10(nodes in the top 10% of degree
values), Top-1(nodes in the top 1% of degree values) under differ-
ent privacy budgets. In Table 4, for the metrics EC and Top-10
and Top-1, it can be observed that as the privacy budget decreases,
the overlap percentage shows a downward trend. The reduction of
the overlap percentage of original edges and the influential nodes
is in line with our expectation of increasing privacy requirements.
It can be seen that the differential privacy has less change on the
global graph structure usability, which makes the structure usabil-
ity of the anonymized graph well preserved, and at the same time,
the perturbation of individual nodes is larger, which makes it more
difficult for an attacker to recover the target nodes or the relation-
ship between nodes in the anonymized graph using the already
acquired background knowledge.

Beyond the single value statistics, we also compare the gener-
ated graph regarding degree distribution. For degree distribution
as shown in Figs. 5-7, we sort the nodes according to their degrees
in the original graph from largest to smallest, and then plot two
degree distribution curves, all-node and origin, based on the
degrees of the nodes in the original graph as well as in the divided
training set. The yellow dash is the degree distribution in our anon-
ymized graph according to the same node ids as in the pre-
anonymized graph. It can be observed that the overall trend of
the degree distribution of the graph after anonymization is the
same as before anonymization, but due to the introduction of dif-
ferential privacy, a random positive and negative perturbation is
added to the degree values of the nodes, and at the same time, this
perturbation shows a tendency to increase as the privacy budget
decreases.

Performance evaluation of a set of important graph global structure statistical metrics. The Original rows include the values of original networks, while the rest rows are the value
corresponding to the network generated by the model under different privacy budgets.

Privacy Facebook Networks Cora Networks IMDB Networks
budgets AVD ACC APL AVD ACC APL AVD ACC APL
original 44.25 043 3.03 5.63 0.18 6.76 28.07 0.28 5.07
e=10 48.81 0.50 2.71 5.79 0.11 451 30.65 030 5.14
e=1 49.11 0.53 2.77 5.71 0.08 4.58 30.61 0.28 5.05
€e=0.1 48.97 0.54 2.81 5.77 0.05 4.51 30.24 0.20 5.06
Table 4
Percentage of original edges retention and overlap of influence nodes.
privacy Facebook Networks Cora Networks IMDB Networks
budgets EC Top-10 Top-1 EC Top-10 Top-1 EC Top-10 Top-1
e=10 67.55 89.75 75.00 48.39 57.46 83.26 37.05 77.18 78.82
e=1 64.24 87.00 72.50 43.38 53.93 78.91 30.76 58.59 70.59
€=0.1 60.64 84.33 70.00 27.97 38.76 65.87 16.97 34.41 64.12
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Fig. 7. IMDB degree change.

As shown in Fig. 8, we compared the cosine similarity of the
degree distribution before and after anonymity with DPGGAN
and related methods [27]. The higher the better. At the same level
of privacy budget, the similarity between the degree distribution of
the anonymous graph published by DP-DGAE and the degree dis-
tribution of the original graph is the highest. It can be seen that
DP-DGAE has better performance in statistical characteristics such
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as degree distribution, which shows that DP-DGAE has a good abil-
ity to preserve the graph structure.

The above information shows that it is difficult for the attacker
to recover the target node through the anonymized graph if the
attacker has the relationship information of the target node with
other nodes, the final output of the model can protect the relation-
ship privacy of the user due to the introduction of e-differential
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Fig. 8. The cosine similarity of degree distribution on networks generated by DP-DGAE with the same privacy budget € = 1 compared with various models proposed in

DPGGAN. Higer similarity means better global data utility.

privacy, and at the same time, the overlap rate of the edges in the
anonymized graph with those in the original graph has been
reduced by a large percentage (32.35% — 35.44%,51.60%—
72.02% and 62.94% — 83.02% overlap rate drops on Facebook, Cora
and IMDB, respectively), and it can also be seen that the probability
of re-identifying the target node in the anonymized graph by the
attacker using the relationship information of the target user is
greatly reduced.

5.4. Link prediction performance

In order to show that the output of DP-DGAE maintains pri-
vacy while maintaining the usability of further learning under
the machine learning model, we use the probability graph
obtained from the DP-DGAE model for link prediction. Results
for the link prediction task in Facebook, Cora, and IMDB networks
are summarized in Table 5. We report AUC(area under the ROC
curve) and AP(average precision) scores of the model in the test
set. Numbers show mean results for 10 runs with random initial-
izations on fixed dataset splits. We use the Probability graph
obtained from the DP-DGAEs model for link prediction, and we
can see that after adding differential privacy, the predictive per-
formance decreases accordingly compared to that without adding
differential ~ privacy  (3.99% — 8.60%,9.98% — 17.17%  and
5.27% — 37.64% predictive performance drops on Facebook, Cora,
and IMDB, respectively). This means that the probabilistic graphs

Table 5
Accuracy of links prediction.

published by our model preserve the privacy of the relational
information as well as the structural information of the users in
the original graph, while retaining their ability to be further
learned under the deep learning model to obtain valid link pre-
diction results. In Fig. 9, for the link prediction accuracy, we com-
pare it with DPNE [37] on the Cora network and DPGGAN on the
IMDB network. When DP-DGAE does not use multi-task learning
(only C(Ar, 0) is used as the objective function), its link prediction
accuracy is similar to the DPNE and DPGGAN. When we use the
results obtained by DP-DGAE (using multi-task learning) for link
prediction, we can find that compared with other schemes, we
have obtained the best results in link prediction accuracy. Since
the introduction of differential privacy changes the connection
information of the original graph, it may make the prediction
probability of the model for negative sampling greater than that
for positive sampling, which will have an impact on the link pre-
diction reliability of the model. To measure the ability of our
model to rank positive and negative samples during link predic-
tion, in Fig. 10, we compare the area under the ROC curve (AUC)
with DPLP [38] on the Facebook network at the maximum level
of privacy interference € = 0.1. The results show that DP-DGAE
significantly outperforms all variants of the comparison scheme
in terms of link prediction performance after using multi-task
learning. The above shows that while DP-DGAE protects privacy,
it also retains its ability to be applied to machine learning models
for further learning.

privacy Facebook Networks Cora Networks IMDB Networks
budgets AUC AP AUC AP AUC AP
original 98.64 98.17 88.35 89.37 92.47 93.99
€e=10 94.64 94.43 79.37 79.39 87.64 88.71
e=1 93.00 93.15 77.04 77.25 73.37 73.98
€e=0.1 89.57 89.81 72.14 72.20 57.90 56.34
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Fig. 9. Accuracy of links predicted on networks generated by DP-DGAE and DP-DGAE(without multi-task learning) with varying € values compared with DPNE and DPGGAN.

Higher accuracy means better link prediction capability.
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Fig. 10. Performance(AUC) of links predicted on networks generated by DP-DGAE and DP-DGAE(without multi-task learning) with same € value compared with several

variants of DPLP. Higher AUC means better link prediction capability.

6. Conclusion

The graph generation model will obtain a reconstruction graph
based on the features of the nodes in the original graph and the
structural information. Due to the prominence of privacy preserva-
tion issues in deep learning, many privacy preservation techniques
in deep learning have emerged. We accomplish the publication of
anonymous graphs by transfering the traditional graph data pri-
vacy preservation problem into a privacy preservation problem
in a deep graph generation model using the existing theory of pri-
vacy preservation in deep learning, and by using multi-task learn-
ing to address a common problem in traditional graph data privacy
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preservation: the balance between usability and anonymity. Com-
prehensive experiments show that the privacy graphs published by
our model protect the relational privacy of users while retaining
the ability to obtain valid link prediction results by further analysis
under the deep learning model.
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