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Graph Reconfigurable Pooling for Graph
Representation Learning

Xiaolin Li

Abstracit—In recent years, graph neural networks have
been widely used for tasks such as graph classification,
link prediction, and node classification, and have achieved
excellent results. In order to apply GNNs to graph classifi-
cation tasks, recent works generate graph-level represen-
tations using node representations through a hierarchical
pooling approach. Existing graph pooling methods such
as DiffPool and EigenPool encourage adjacent nodes to be
assigned to the same cluster, making the node assignment
process similar to the graph partitioning process that ig-
nores the role of nodes or some substructures (e.g., amino
acids) in the process of composing a graph (e.g., proteins).
In this article, we propose a new pooling operator RecPool
to capture the role played by nodes in the process of com-
posing a graph. Specifically, we probabilistically model the
feature distribution of the coarsened graph, construct the
feature distribution of each cluster, resample the features
of the coarsened graph into the original nodes according to
the soft assignment matrix, reconstruct the original graph,
and optimize the soft assignment matrix to divide the nodes
that play the same role in the reconstruction process into
the same cluster. The excellent performance of Recpool is
demonstrated through experiments on four public bench-
mark dataset.

Index Terms—Graph classification, graph pooling, graph
neural networks, hierarchical graph representation learn-
ing, graph reconfigurable.

[. INTRODUCTION

N RECENT years, the study of extending neural networks
I to graph-structured data has gradually become a new trend
in learning on graphs. Research on this topic is often referred to
as Graph neural networks (GNNs) [1], which efficiently obtain
a representation of nodes by aggregating network structures
and features on top of the underlying computational graph.
In this way, the feature information of nodes is propagated
through the network topology, and nodes generate embeddings
by aggregating the information obtained, which are then used
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for tasks like node and graph classification [2], [3], [4], [5], link
prediction [6], and recommendation [7]. Graph neural networks
have achieved excellent results in a variety of graph-based tasks.
In this article, we focus on the graph classification task to
investigate the process of learning graph-level representations.

Graph classification is a fundamental task on graph data that
aims to predict the classification labels of the whole graph. One
usually uses graph neural networks to obtain feature as well as
structural information about the graph, extract the graph repre-
sentation, and thus predict the label of a given graph. However,
existing GNN methods generate good node representations and
then globally aggregate the node representations into a graph
representation, which is inherently flat, and its equivalent treat-
ment of all nodes fails to capture the substructure in the graph.
For networks like biological networks, which are composed of
various functional groups as well as chemical bonds, the use of
flattening methods can have a greater impact [8], [9]. This local
structure is not captured in the process of global pooling. There-
fore, in order to make the pooling method more interpretable and
to ensure that it satisfies our intuition of the pooling process, it
is necessary to generate graph representations that preserve both
local and global structure, and therefore, we need a hierarchical
pooling process similar to that of conventional convolutional
neural (CNN) networks [10].

There are many recent works that study the pooling process of
graph neural networks [2], [3], [11]. These methods reduce the
original graph to a coarsened graph by partitioning the nodes
in the graph into clusters, treating a cluster as a supernode,
and using the feature information of the nodes in the original
graph to generate the features of the supernodes. However, in
performing pooling and clustering, we find that most approaches
follow an underlying rule that neighboring nodes should be
encouraged to be divided in a cluster, which seems intuitive,
but for biological or chemical networks, a graph is composed
of many different combinations of nodes, and two nodes are
connected not necessarily because they are the same node, but
react because they are different nodes.

For example, in Fig. 1, each endpoint (i.e., node) of compound
Ethyl2 — iodooxy — 1,3 — thiazole — 5 — carboxylate rep-
resents an atom, and the edges represent the chemical bonds
between atoms. It can be observed that the atoms that are
connected (i.e., bonded) with each other in the compound do
not always belong to the same class (i.e., with the same color).
In other words, atoms that fall into the same class are not
necessarily connected with each other. Similarly, in Fig. 2, it
can be observed that similar proteins (i.e., connected by black
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Fig. 1. Chemical structure of Ethyl 2-iodooxy-1,3-thiazole-5-car-
boxylate, in which atoms with the same color (black/red/blue/yellow)
belong to the same class, and bonded atoms are connected with lines.
Please note that the carbon atoms are not specifically labelled with ‘C’
due to the depiction convention of organic compounds.
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Fig. 2. Protein interaction networks, with purple edge representing
experimentally proven interactions, blue edge representing interactions
proven in supporting databases, green edge representing gene simi-
larity, and black edge representing genes co-expressed in the same or
different species. In essence, proteins connected by purple and blue
edges are considered interacting with each other, and those connected
by green and black edges are considered similar.

and green edges) do not necessarily interact with each other (i.e.,
connected by purple and blue edges). Therefore, it can be implied
from the two examples that the traditional idea of encouraging
inter-connected nodes to be classified into the same class when
using GNNs becomes inaccurate for biological/chemical net-
works. It calls for an urgent need to design a pooling method
that captures the role of each node.

Therefore, based on the above assumptions, we no longer
encourage the assignment of neighboring nodes to the same
cluster, and we add an auxiliary process to the cluster assignment
process. By using the features of the coarsened graph obtained
from cluster assignment to reconstruct the original graph, we
want to capture the role played by each node in the reconstruction
process and assign nodes that play similar roles in the compo-
sition of the graph to the same cluster. Our main contributions
are summarized as follows:

e We propose a novel graph pooling operator named
RecPool, which for the first time incorporates the role
played by nodes in composing a graph into the hierarchical

pooling method and provides a new perspective on graph
pooling.

® We model the prior distribution of variational inference
using the Laplace distribution, which improves the per-
formance of RecPool on graph classification. And we
prove the computational upper bound of Kullback-Leibler
Divergence for variational and prior distributions.

® We compare the accuracy of graph classification to state-
of-the-art methods on multiple public datasets, which
demonstrates RecPool’s superior ability to learn graph
representations.

The remainder of this article is organized as follows. Section I
illustrates the related work. Section III describes the preliminar-
ies. In Section IV, the proposed scheme is introduced in detail.
Section V gives the experimental evaluation. The conclusions
are summarized finally.

Il. RELATED WORK
A. Graph Pooling

GNNs can solve graph classification tasks by generating a
graph-level representation. Pooling operations can downsize
inputs thus reducing the number of parameters, expanding the
receptive fields and suggesting the generalization ability of
the model. Therefore combining graph neural networks with
pooling is known as a mainstream trend in solving graph classi-
fication problems recently, and we can divide the recent graph
pooling methods into two major branches: global pooling and
hierarchical pooling.

Global graph pooling combines the representation of nodes
into a vector as a graph representation. The graph readout
operation [12] generates the graph embedding by summing or
aggregating the embeddings of all nodes using a neural network.
Set2set [13] obtains a representation of the graph by using
the LSTM model. DGCNN [14] obtains a fixed size graph
representation by sorting the order of the nodes. Global graph
pooling generates graph representations by node features only,
which may lose important information.

Hierarchical graph pooling methods captures the hierarchical
representation of the graph during pooling by constructing a
hierarchical GNNs. DiffPool [2] maps nodes to a set of clusters
by learning a soft assignment matrix. AttPool [15] and SAG-
Pool [12] learn the graph representation by designing a top-k
node selection strategy to select the most important nodes to
form a coarsening graph. RepPool [11] reduces information
loss by a learnable method to integrate non-selected nodes.
NIAPool [16] captures the discrepancies between nodes through
an attention mechanism to obtain information about the nodes
in the graph from both local and global aspects. EigenPool [3]
performs pooling operations by introducing the graph Fourier
transform. However, most of the above methods do not consider
the role played by the nodes in the composition of the graph, but
rather cluster the nodes based on the features of the nodes them-
selves or considering the structural characteristics of the graph,
and most of the adjacent nodes will be divided into the same
cluster, which is inappropriate from the perspective of network
composition, for example, in a graph (protein), connected nodes
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(amino acids) should not necessarily be in the same cluster (the
same or chemically similar amino acids), and similarly, nodes
that are far apart, may belong to the same cluster.

B. Information Bottleneck

Information bottlenecks (IB) [17], originally applied in the
field of signal processing, are used to optimize the short code
for retaining the maximum amount of information in the input
signal. Variational information bottleneck (VIB) [18] introduces
information bottleneck theory to deep learning for the first
time, allowing the model to learn compressed and meaningful
representations. Today, a large amount of research has applied
IB and VIB to graph neural networks [19], [20], recommender
systems [21], computer vision [22], natural language process-
ing [23], and other fields. In some recent work concerning
information theory and graph learning [24], [25], [26], [27],
researches have applied information bottleneck theory to graph
structure learning tasks with the aim of removing noise and re-
dundant information from graph data and extracting potentially
task-relevant key graph structures. However, in this article, we
are more concerned with our model’s ability to capture the role
played by nodes in the composition of the graph, which is crucial
in some biochemical networks. Therefore, we utilized a different
approach from these works mentioned above by optimizing the
hierarchical graph pooling process using information bottleneck
theory to generate a coarsened graph that may not be present in
the original graph, and on top of that, we added a reconfiguration
process to capture the role played by nodes in the composition
of the graph.

C. Graph Generation

Graph generation models are used to synthesize graph data
that retain certain statistical features of the original data and thus
facilitate graph data mining tasks. Early graph generation models
mainly used probabilistic models to manually design graphs with
certain statistical features based on publishers’ observations and
empirical knowledge [28], [29].

Due to the rapid development of deep learning, many ad-
vanced graph generation models have been developed to take
advantage of the more powerful data abstraction capabilities
of neural networks to generate graphs that contain more in-
formation [30], [31], [32], [33]. For Example, GraphRNN [31]
decomposes the process of graph generation into the process of
node generation and edge addition, and completes the generation
of the graph through two levels of recurrent neural networks;
MolGAN [33] uses generative adversarial networks for graph
generation, while using reinforcement learning to encourage
the generated graphs to have certain properties based on the
reward function. These graph generation models are widely
used in molecular graph generation [33], social network graph
publishing [34] and other fields with state-of-the-art results.

D. Variational Graph Auto-Encoder

Variational Graph Auto-Encoder (VGAE) [30] is an extension
of Variational Auto-Encoder (VAE) [35], [36] to graph structure

data. Several graph representation learning methods generate
embeddings of nodes by obtaining a deterministic hidden rep-
resentation [37], [38].

Problem 1. Given an attributed graph G = (A4, X)) with the
adjacency matrix A € R™*" and node feature matrix X €
R"™*?_ find the probability distribution of the latent represen-
tation of nodes Z € R™™, i.e., p(Z|X, A).

To solve this problem, Kipf et al. [30] obtain inter-
pretable latent representations by using a Gaussian dis-
tribution q(Z|X,A) =], ¢i(zi| X, A) with ¢;(z;|X,A) =
N (hi|pi, diag(a?)) to approximate the true posterior distri-
bution of the embedding using a Graph convolutional net-
work(GCN) as an encoder and using a simple inner product
decoding, while learning the mean and standard deviation ma-
trices of the approximate distribution using two GCNs, i.e.,
u=GCN,(X,A),logc = GCN,(X, A).

[ll. PRELIMINARIES
A. Problem Formulation

We focus on semi-supervised graph classification in an at-
tributed graph G = (A4, X), where A € R™*™ is the symmetric
adjacency matrix with n nodes and X € R"*?is the node feature
matrix, where d is the dimension of node features. Specifically,
A;j =1 represents there is an edge between node ¢ and j,
otherwise, A;; = 0. Graph classification maps a set of labeled
graphs D = {(G1,v1), (G2,42), . . .}, where y; € ) is the label
corresponding to graph G; € G, to the set of labels by learning
amapping f : G — ).

B. Graph Neural Networks

Graph neural networks efficiently obtain a representation of
nodes by aggregating network structures as well as features [37],
[39]. In this way, the feature information of nodes is propagated
through the network topology, and the information obtained by
node aggregation generates node embeddings. Specifically, we
use the “message passing” form to define the GNN:

HY = ReLU (AH(H)W(”) )

where H(®) € R"*? are the embeddings computed after I-step
propagation of the GNN, A = D~2(A+ I)D? is the sym-
metrically normalized adjacency matrix, and W is a weight
matrix. In particular, H(®) = X e R™*¢,

C. Differentiable Pooling

Diffpool [2] uses the output of the GNN model to learn the
cluster assignment matrix over the nodes. By stacking L GNN
modules and learning to use the embeddings generated from
GNNss at layers [ — 1, Diffpool assigns nodes to clusters at layer
! in an end-to-end fashion. In layer [, given the feature matrix
X O of the coarsened nodes, and the coarsened adjacency matrix
AW two GNNs are used to generate the assignment matrix S(*)
and embedding matrix Z ("), respectively:

Z® = GN Ny empea(AD, XV (2)
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SW = softmax (GNNl,pool(A(l)’ X(l))) ©)

where the softmax function is applied in a row-wise fashion.
At layer | = 0, the adjacency matrix A and the node feature
matrix X are used as inputs to the model. Each row of the cluster
assignment matrix S() € R™*"+1 corresponds to a cluster at
layer [, and each column corresponds to a cluster at layer [ 4 1
after coarsening, which indicates the soft assignment of each
cluster at the current layer to a cluster at the next layer.

After giving the cluster assignment matrix S, in order to
perform the hierarchical pooling process, it is necessary to give
the topological information of the coarsened graph as well as the
feature information. A new coarsened adjacency matrix A¢+1)
and embedding matrix X (“*'1) can be generated by the following
two equations:

XD — S(l)TZ(z) € Ru+ixd 4)
A(H—l) — S(l)TA(l)S(l) e R+ X4 (5)

With the cluster assignment matrix S*), it is possible to assign n;
nodes at layer [ to n;1 clusters at layer [ + 1, where n; > n;4 1,
so that the clusters at layer [ + 1 correspond to a number of nodes
at layer . AU+1) represents the adjacency matrix of a fully con-

nected graph, and the elements of the matrix, AE;H), represent
the connection strength of node ¢ and node j in the coarsened
graph, and similarly, X ‘1) represents the embedding of nodes

in the coarsened graph.

D. Graph Information Bottleneck

Given the input graph G and the label Y, the objective of
GIB is maximized to find the internal code Z : maxy I(Z,Y) —
BI(G, Z), where the value of the hyperparameter [ can deter-
mine the balance between informativeness and compressibil-
ity, and I(X,Y") refers to the Shannon mutual information of
two random variables. Optimizing this objective will lead to
a compact but informative Z. For the process of graph pool-
ing, we expect to find the most informative coarsened graph
Geoar- Yu et al. [20] found the maximally informative but com-
pressed subgraph of graph G to enhance tasks such as graph
classification, graph interpretation and graph denoising, called
IB-subgraph, which are obtained by optimizing the following
objectives:

max I(Y7 gsub) - Bl(g, gsub) (6)

Gisub €Gub

where Gy, indicates the set of all subgraphs of G.

IV. THE PROPOSED MODEL

The key idea of Recpool is that we construct the pooling
reconstruction module to sample the features from the coarsened
graph, map the sampled feature distribution to the orginal nodes
according to the assignment matrix, and use the mapped features
toreconstruct the graph. At the same time, we use graph informa-
tion bottleneck theory to optimize the graph pooling process so
that the coarsened graph retains as much information as possible,
but retains less noise and redundant structural information. The

framework of RecPool is shown in Fig. 3. In this section, we
will describe in detail the RecPool.

A. Graph Reconfiguration

The extant graph pooling methods, both in terms of model
design and experimental results, exhibit a phenomenon where
neighboring nodes are assigned to the same cluster. In Diff-
pool [2], the authors use Auxiliary Link Prediction Objective as
the regularization term, which makes it easier for two nodes
with higher connection strength to be mapped to the same
cluster. Similarly, in EigenPool [3], the authors directly use
Spectral Clustering for subgraph partitioning, which maps nodes
of the same subgraph to the same cluster. This seems intuitively
correct, but in some graph structures, especially biological net-
works, this causes the model to ignore the role of individual
nodes in the graph.

To capture the role played by each node in the configuration
of the graph, we use the VGAE [30] to capture the probability
distribution corresponding to each cluster after coarsening, use
the assignment matrix S to sample features for each node from
the corresponding cluster, and finally perform link prediction
based on the sampled node features to simulate the process of
graph configuration. In the following, we illustrate how to use
VGAE to capture the feature distribution of each cluster and how
to use the cluster assignment matrix to sample features for each
node, and we try to use Laplace prior as the prior distribution of
the hidden variables and verify the results from different prior
distributions.

In order to obtain the hidden variable [, we parameterize a
simple inference model using a two-layer GCN:

N
Q(Hcoar|Zcoar7 Acoar) = H Q(hi |Zcoar> Acoar);

=1
with  q(hi| Xeoar, Acoar) = N (|1, diag(a?)) (7)

where, 1 = GON,,(Zcoar, Acoar) is the matrix of mean vectors
s similarly logo = GC Ny (Zeoary Acoar)-

Since the number of nodes after pooling is m < n, after using
the coarsened embedding matrix Ze, € R™*% to obtain the
hidden variable H.o, € R™*% where d;, d, are constants, we
need to construct a method to map the hidden variable Hq, of
the coarsened graph back into the original nodes according to
the cluster assignment. Since the cluster assignment matrix S
in (4) represents the mapping relationship between nodes and
clusters, we use the following equation to assign the extracted
cluster features to the corresponding nodes:

Hextend = SHcoar S RnXdz (8)

Equation (8) constructs the feature matrix Hexeng Of the node
before pooling by upsampling the feature matrix Hy, of the
cluster through the cluster assignment matrix S.

After obtaining the approximate joint posterior of H o pa-
rameterized by ;¢ and o, we use the cluster assignment matrix to
extend the resampled H.,,, to all nodes as shown in (8). Now that
the clustering information of each node is captured in Hexiend,
we use the Multi-layer Perceptron (MLP) as a decoder aiming to
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Fig. 3.
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lllustration of the proposed RecPool framework. In the Differential Pooling process, we use the cluster assignment matrix to hierarchically

pool the original graph and predict the graph labels; in the Graph Reconfiguration process, we use the cluster assignment matrix to map the
features of the coarsened graph obtained from the Differential Polling process back to the original graph for graph reconstruction, so that the cluster
assignment matrix captures the role played by the nodes in the reconfiguration process.

reconstruct the adjacency matrix A so that the cluster assignment
matrix can optimize the process of cluster assignment based
on the reconfiguration, i.e., each node determines the cluster
assignment of a node according to the role it assumes in the
process of configuration the graph or some kind of substructure
in the graph. Here, MLP is used to decode the adjacency matrix:

N N
p(A|Hextend) = H Hp(Am ‘Hextend)

i=1 =1
with p(Aij = I‘Hextned) = U(W X Hextend + b) )

where A;; are the elements of A, W is the weight matrix, b is
the bias term, and o (-) is the logistic sigmoid function.

We use the distance metric between the generated and original
graphs, and the scatter between the vector representation of the
nodes and the normal distribution to form the loss function of
the reconstruction part and optimize its variational lower bound:

L = By (Hopue| Zeower Acor) 108 P(A Hextena)]

— KL [Q(Hcoarlzcoar; Acoar)Hp<Hcoar)] (10)

where KL[g(-)||p(+)] is the Kullback-Leibler divergence be-
tween ¢(-) and p(-). For the choice of prior distribution, unlike

the Gaussian distribution used in the original VGAE, we use
the Laplace distribution as the prior distribution p(Hcear) =
[1; p(hi) = I1; La(hs]0, ).

Lemma 1. Upper bound on the mathematical expectation of
the absolute value of a random variable obeying the Laplace
distribution with parameters A, p:

E[|X[) <A+ |u] (11)
Proof 1:
E[|X[] = — /+°O jele " da
o)
1 +o0
=3 / Ay + ule dy
1 +o00
<5 [ (al+ e vy
+0o0 +00
= A/ ye Ydy + |ul / e Ydy
0 0
=X+ |ul (12)
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Theorem 1. The lower bound for the Kullback-Leibler scat-
ter calculation using the Laplace distribution as the prior
distribution is:

_KL[ ( coar|Zcoar7Ac0ar)||p( coar)]
> log(hg) = Ag — lpgl +1 (13)

where, (1 = GC'N,,(Zcoar, Acoar) is the matrix of location vec-
tors ;5 similarly Ay = GC' Ny (Zcoar, Acoar) 1s the matrix of scale
parameters A;.

_lz—pp)
e

Proof 2: Suppose p(Heoar) =

A | —lenkal
= —€ rq
coar) 2hg

ﬁ and q (Hcoar | Zcoar b
. Then

— KL [Q(Hcoar|Zcoara coaI)Hp( coar)]

= ﬂq\ 767 p
iy P
/ . g lz—pql dh

1 _|z—ngl — —
- e 7;\; log ﬁ _ |.'L' :up| + |‘T Mql dh
24, Ap Ap A
.| log )‘q) |I_Np| i |z — pql
)‘p )"q

J

Aq

A 1
=log(Q)—E o = rpl) + 1

)\p )\-p q P

LetA, =1, u, =0, and apply Lemma 1 :
= log(hq) — Eq [Jz[] +1
> log(hq) = Aq — [1g| +1

— Hpl] + E (|7 — 1]

B. Graph Information Bottleneck for Graph Pooling

To find the most informative but compressed subgraph Gy,
Yu et al. [20] achieve this by optimizing the objective in (2).
However, for the graph pooling process, we are not limited to
finding a representative subgraph in the original graph, but wish
to construct a new coarsened graph G, from the original graph
by learning a mapping relationship S € R™*"" between nodes
and clusters. We want to find a most representative coarsening
graph G, that contains the maximum information for graph
classification while having the maximum compression within
a specified range (determined by the hyperparameters). We
hope to optimize the cluster assignment process by exploiting
the graph information bottleneck so that the coarsened graph
has very little redundant information and contains the most
information favorable to graph classification. According to (6)
we can derive the graph information bottleneck (GIB) objective
for the pooling process:

max I(Y, Geour) — (14)

Geoar € Geoar

BI(G, Geour)

where Geoar denotes the set of all coarsening graphs of G.
Different coarsening graphs G, are determined by different
cluster assignment matrices S.

The GIB objective of the pooling process as shown in
(14) contains two components. The first component I (Y, Geoar)
measure the relevance between Y and G,. Give its expanded
form:

I(K gcoar) = /p(ya gcoar) 1Og p(y|gcoar)dy dgcoar

+ H(®Y) (15)

where the entropy H(Y') of the graph labels can be ignored
in the optimization process. We can use the empirical distri-
bution p(y, Geoar) = 7 Zf\[: 1 0y ()06, (Gooar, ) to approximate

(Y, Geoar)» Where §() is the Dirac function of the sample training

data, y; and Geoar, are the coarsened graph and label correspond-
ing to i-th training data. Since obtaining p(y|Geoar) directly is
intractable, let gy, (y|Geoar) be a variational approximation to

P(Y|Geoar)- By using the variational approximation gy, (¥|Geoar)

instead of the true posterior, we can obtain a tractable lower
bound for (15):

I(Y7 Gcoar) > /P(% Gcoar) IOg d¢, (y|Gcoar>dy dGcoax

Q

N

1

N 5 logq¢, (yi|Gcoar1:)
=1

:—L1(qp, (Y|Geoar)s Yt)

where y; is the true classification label corresponding to the
graph. From (16), we maximize I(Y, Geoar) by minimizing the
classification loss £, between G.., and Y. This encourages
the model to use the coarsened graph to predict the labels of
the original graph.

For the second part of the GIB objective in (14), a reason-
able prior distribution of p(Geoyr) is difficult to find because it
represents the distribution of the coarsened graph rather than a
latent representation, so, analogous to the operation of Yu et al.
[20] to approximate the mutual information between G and Gy,
using the DONSKER-VARADHAN representation [40] of KL-
divergence directly, we apply it to the process of graph pooling to
obtain the approximate form of the mutual information between
G and G, as follows:

I(gv gcoar) =

16)

sup

EGchonrep(gygcoar) f<,‘l5z (ga gcoar)
f¢2:G><G~>R

— 108 Egep(0) Guonep (G €7 T ) (17)

We use GNN to design a statistical network fg,. This network
first uses GNN to obtain the embedding of the original graph
G and the coarsened graph G.o,, and then concatenates the
embeddings of G and G, into an MLP network to map the
set of graphs into a set of real numbers. In conjunction with
the approximation method using the empirical distribution in
L1, we can obtain the mutual information minimization proxy
objective for (G, Geoar):

1 N
N Z f¢2 (gv gcoa.ri)
=1

N

1 .
_logN Z oF62(Gi-Geoar, ) (18)

i=1,j7i

I%ax £2(¢2; gcoar) -
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Fig. 4. RecPool’s training framework, where Lg.. and KLy, to-
gether form (10), L, represents (16), and L g, represents £ in (19).

TABLE |
STATISTICS OF THE DATASETS
Datasets Graphs Nodes(avg) Edges(avg) #Class
ENZYMES 600 32.63 62.14 6
PROTEINS 1113 39.06 72.82 2
D&D 1178 284.32 715.66 2
NCI1 4110 29.87 32.30 2

Combining (14), (16), and (18), we use a bi-level optimization
process to optimize the GIB objective:

gmigl ﬁ(gcoan ¢1 ; (b;) =L (Q¢I (y|G003r)7 yt)

+ 6[22((;5;7 gcoar)
s.t. @5 = argmax Lo(d2, Geoar)

19)
(20)

In the inner loop, we first optimize (18) to obtain a sub-optimal
mutual information estimator ¢, and then, in the outer loop, use
the estimator ¢} obtained in the inner loop for global optimiza-
tion to obtain the parameters ¢; and the coarsening graph Goqr.
The overall training framework of RecPool is shown in Fig. 4.

V. EXPERIMENT

In this section, we will experimentally measure the effective-
ness of the RecPool. We will first present the dataset used and
the state-of-the-art methods we compared, then we will detail
the experimental settings of the model and give the results of
graph classification and the corresponding analysis. Finally, we
will compare and analyze the cluster assignments of the different
methods on the real graph dataset.

A. Experimental Settings

1) Datasets: To evaluate the graph classification performance
of our proposed model, we conduct experiments on four public
graph classification benchmark datasets, which includes three
protein graph datasets, i.e., D&D [41], PROTEINS [8] and EN-
ZYMES [42]; and a dataset of anticancer activity of compounds
NCI1 [43]. Statistics of the datasets are shown in Table 1.

2) Baselines: We take three kinds of methods as baselines:
(1) Curriculum Learning method including CurGraph [44]; (2)
GNN-based methods including GCN [45], GraphSage [37],

TABLE I
COMPARISON OF GRAPH CLASSIFICATION PERFORMANCE WITH THE
STATE-OF-ART METHODS

Method Data set
ENZYMES D&D PROTEINS NCI1

GCN 44.03 £3.59 7590 + 141 74.00 £3.59 7253 +2.29
GraphSage 5542 +342 76104320 73.60+£353 7322+1.79
GIN 31.114+£192 6594+187 6817 +£239 7218+ 193
SET2SET 4015+781 7212+ 6.28 70.13£3.79 7151 +231
DiffPool 59.74 £ 253 7727 +£238 7558 £236 76.89 +1.90
EigenPool  62.44 +3.81 7598 +4.03 7417 £3.15 7827 £1.95
CurGraph  64.80 +3.39 78.60 £3.04 7540+3.10 80.61 £1.73
RepPool 63.14 £ 1.36 78.06 =485 7750+ 215 79.24 +2.34
GIB 6235+ 137 7816+ 142 7490+ 151 77.68 £+ 1.41
NIAPool 62.04 £232 7928 4+430 7525+371 78.08 £ 1.92
RecPool 62.83 +3.40 80.31 +2.70 78.29 +2.49 80.73 + 1.85

GIN [39], SET2SET [13]; (3) hierarchical graph pooling meth-
ods including Diffpool [2], EigenPool [3], RepPool [11],
NIAPool [16] and GIB [20].

3) Experimental Settings: We have implemented Recpool
using the pytorch framework. For all GNN baselines as well as
Curriculum learning methods, we used 10-fold cross-validation
figures reported by the original authors when possible. For all
hierarchical graph pooling methods, we use only 1 pooling
layer for comparison based on performance as well as fairness
considerations. Ying et al. [2] argue that the 1 pooling layer
approach can achieve similar performance in small datasets such
as ENZYMES, PROTEINS, etc. Therefore, we uniformly use a
1 pooling layer architecture, and the pooling ratio r is set to
be in the range of [0.1, 0.4]. The Differentiable Pooling part of
our model follows the Diffpool [2] implementation. In the part
of RecPool, we use a GCN layer to transform the embedding
of the clusters to obtain the hidden variables, and then use two
GCNes to construct the mean and variance vectors of the cluster
distribution. The expanded feature vector is finally decoded by
an MLP composed of 3 fully connected layers to obtain the
predicted adjacency matrix. More details of the experimental
settings can be found in the experimental source code.!

B. Performance on Graph Classification

We compared the performance of RecPool with the baseline
algorithm for graph classification on 4 datasets, the accuracy and
standard deviation are reported in Table II. First, one can observe
that the performance of RecPool is superior to its counterparts on
three out of four benchmarks. In particular, RecPool improves
over the best baseline by 1.03% on the DD dataset and by 0.79%
on the PROTEINS dataset. Next, RecPool consistently out-
performs the GNN-based method significantly on all datasets,
demonstrating the importance of adding a pooling module to
the model. This is because RecPool can extract more useful
graph structure information than the global pooling used in the
GNN-based approach. By comparing with existing methods of
hierarchical pooling methods, RecPool achieves better perfor-
mance on most datasets, which shows that we can improve the
model’s performance on graph classification by adding a graph
reconfiguration part to the pooling process to optimize the cluster

Thttps://github.com/Marvin-huoshan/RecPool
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Fig. 5. Accuracy and standard deviation of graph classification be-
tween RecPool and its variants.

assignment matrix. In particular, for biological networks, each
node or substructure assumes a different role in the graph and has
multiple combinations to form different proteins or compounds,
so building a method to learn how nodes are composed in
the graph and assigning the same type of nodes to the same
clusters can help optimize our cluster assignment process and
ultimately achieve more accurate and more interpretative graph
classification performance.

C. Ablation Study

In this section, we verify the effectiveness of the proposed
component on helper graph classification. In particular, we
investigated the effect of using the Laplace distribution as a
prior distribution for VGAE on graph classification accuracy. We
also investigate whether the optimization of the graph pooling
process using GIB is effective in improving graph classification
accuracy. To achieve the goal, we define the following variants
of the proposed framework:

e RecPool_G: It denotes the use of Gaussian distribution as
the prior distribution of VGAE in the graph reconfigura-
tion part, where RecPool uses the Laplace distribution.

e RecPool_GIB: It denotes the process of optimizing cluster
assignment using GIB on top of RecPool.

e RecPool_G_GIB: It denotes the process of optimizing
cluster assignment using GIB on top of RecPool_G.

As shown in Fig. 5, RecPool outperforms the other variants in
three of the four datasets ENZYMES, D&D, PROTEINS, and
NCII. Among them, by comparing RecPool with RecPool_G we
can know that using Laplace distribution as the prior distribution
of VGAE can achieve better results in most cases. Meanwhile,
RecPool performs poorly on the ENZYMES dataset due to the
fact that the Laplace distribution has a higher probability density
near and away from the mean compared to the Gaussian distri-
bution. Our modeling of the hidden representation of clusters
using the Laplace distribution will cause the features of nodes
sampled in the same cluster to be concentrated in the mean part
of the cluster and away from the mean, reflecting the most salient
features of the current cluster, which is beneficial for binary clas-
sification tasks, but in multi-classification tasks. This property

0.7
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o o
w o

o
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— RecPool
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(a) ENZYMES
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—— RecPool_GIB
— RecPool
—— DiffPool
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(b) PROTEINS

Fig. 6. Classification accuracy of RecPool_GIB, RecPool and DiffPool
on the validation set during training. The solid line is the trend of the
smoothed curve, and the shaded part is the change in classification
accuracy on the validation set.

of the Laplace distribution will make the capture of features
inadequate. Therefore, we can adjust the prior distribution of
the model to get the best results according to the problem the
model needs to solve. Also, by comparing the performance of
graph classification accuracy and standard deviation before and
after optimization with GIB, we can observe that using GIB
does not always result in good graph classification accuracy, but
has a better effect on reducing the standard deviation of graph
classification, which can make the model’s performance in graph
classification task more stable.

As shown in Fig. 6, we plot the graph classification perfor-
mance of RecPool, RecPool_GIB and DiffPool on the validation
set for the model during the training process, and it can be
observed that our proposed RecPool and its variants are superior
to DiffPool in terms of performance in graph classification. At
the same time, our proposed scheme achieves better perfor-
mance with fewer Epoch than DiffPool, which indicates that
using graph reconstruction for auxiliary graph classification is
effective, and by comparing RecPool with RecPool_GIB, we can
see that although adding GIB does not improve the accuracy of
graph classification more significantly, but using GIB allows the
model to obtain a faster convergence rate and avoid oscillations,
which increases the stability of the model.
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Fig. 7. Visualization of cluster assignment of RecPool and Diffpool on
two real compounds.

D. Case Study

Unlike traditional hierarchical graph pooling methods such
as DiffPool, our proposed RecPool uses graph reconstruction
loss to optimize the cluster assignment process and does not
encourage neighboring nodes to be assigned to a cluster, making
the clustering of nodes constrained by the role played by each
node in the composition of the graph. In this subsection, we
illustrate how the cluster assignment in this scheme differs from
DiffPool. Specifically, we observe the results of DiffPool and
our scheme for node clustering on two real compounds.

As shown in Fig. 7, if nodes are assigned to the same cluster,
they are colored the same. It can be observed that nodes in the
same cluster of RecPool can appear in different positions in the
graph. On the contrary, most of the nodes in the same cluster
of DiffPool are close to each other in terms of distance. This
is consistent with what we expected before. At the same time,
by observing the clustering results with the atomic composition
in the compound, we can see that RecPool captures a richer
and more accurate function of nodes (i.e., atoms) by simulating
the composition process of the graph (i.e., compound) and by
avoiding adjacent nodes to be classified in the same class. There-
fore, combined with the good graph classification performance
of RecPool in Table II, we can conclude that RecPool provides a
new perspective for hierarchical pooling of graphs, thatis, a more
accurate and more explanatory hierarchical pooling method can
be obtained by considering the role played by each node.

E. Parameter Analysis

We further investigated the effect of hyper-parameters on
RecPool. In detail, we investigate the effect of pooling ratio
r and the number of pooling layers k on the classification
accuracy of the model. As shown in Fig. 8, we investigate how
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Fig. 8. Graph classification results by varying two parameters: pooling
ratio r, pooling layers k on four datasets: ENZYMES, D&D, PROTEINS,
NCI.

these parameters affect classification accuracy through changes
in values on the data sets: ENZYMES, PROTEINS, D&D and
NCII.

We can find a similar trend on different datasets, regardless of
the pooling rate or the number of layers pooled, the best graph
classification performance of RecPool tends to be achieved with
smaller parameters. By observing Fig. 8(a), we can see that the
accuracy of graph classification shows an overall decreasing
trend as the pooling rate increases, which indicates that when the
pooling rate is larger, it may provide more redundant information
to the model and affect the classification performance of the
model. Observing Fig. 8(b), it can be seen that the classification
performance of the model is affected when the number of pool-
ing layers is larger, so fewer pooling layers should be selected,
and at the same time, the selection of one pooling layer can
already obtain a fairly good graph classification performance on
most of the datasets.

VI. CONCLUSION

This article introduces a new graph pooling operator, which
focuses on the role played by each node in the composition of
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the graph when pooling is considered. Specifically, the pooling
operator we design consists of three components, i.e., Differen-
tiable Pooling, Graph Reconfiguration and Graph Information
Bottleneck. In the first component, we pool the graph using the
framework proposed by Ying et al. [2] In the second compo-
nent, we first construct the feature distribution of the pooled
graph, then map the attributes of the pooled graph back to
the original graph and use the mapped graph to perform graph
reconstruction to optimize the attributes of the pooled graph and
the pooling strategy. In the third component, we use the informa-
tion bottleneck theory to optimize the generation of coarsened
graphs so that the coarsened graphs we generate retain the
maximum information beneficial to graph classification while
containing the least redundant information. Based on RecPool,
we construct a hierarchical graph pooling model to learn graph
representations for graph classification through an end-to-end
fashion. The excellent performance of RecPool is illustrated by
extensive comparison experiments with state-of-the-art methods
on several graph benchmark datasets.
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