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Abstract. Most of the existing influence maximization problems
assume that k user promotion targets are selected to the entire mobile
social networks (MSN) under the complete network structure. However,
in reality, it is unrealistic to acquire the complete network structure.
Therefore, it is our motivation to maximizing influence under partially
observable networks. Firstly, we propose a new model named Variational
Graph Auto-Encoder with Network Gravity (VGAE-WNG) which com-
bined VGAE with a new effective decoder to obtain the link structure
that was not presented before. Secondly, we propose a novel Similarity
Decreasing Transfer Algorithm (SDTA) to evaluates the reachability of
a node’s influence on other nodes, by according to the transfer of simi-
larity between nodes and the distance of information spread on the path
between nodes. Finally, we performed experiments on three different scale
networks. The results show that our model outperforms other algorithms
by about 2% in link prediction, and our method achieves similar or even
better propagation performance in the absence of partial network struc-
tures than state-of-the-art algorithms with full network structures.

Keywords: Influence maximization · Mobile social network · Link
prediction · Node similarity

1 Introduction

The development of mobile device technology has made it possible for almost
everyone to connect to the Internet for communication at any time, MSN have
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emerged as a result of the combination of social networks and mobile Internet.
Through MSN, people can communicate anytime and anywhere even if they are
separated by thousands of miles [1]. The convenience of communication in MSN
enables information to be quickly and widely disseminated through important
nodes in the network in a “word-of-mouth” way. Along with this phenomenon,
issues such as viral marketing [2], rumor control [3] and community detection [4]
have been raised and extensively studied, and how to protect private informa-
tion from being leaked in the face of such rapid information diffusion is also an
important research direction [5]. Researchers put forward the influence maximiza-
tion (IM) problem to study this kind of communication phenomenon, which has
attracted widespread attention [6]. The goal of maximizing influence is to select
some high-influential seed nodes to form a node set in the network, and spread the
message through the node set in order to achieve the maximum spread in the net-
work. Kempe et al.[7] analyzed that maximizing influence is an NP-hard problem.

Most of the existing research on influence maximization problem assumes
that the complete network topology can be obtained to analyze and solve the
problem. However, in fact this hypothetical scenario is unreasonable. However,
this hypothetical scenario is unreasonable. In fact, a complete network structure
is difficult to obtain, and the agent can only observe part of the structure of the
entire network [8]. How to maximize the influence under the partially observ-
able network is an urgent problem to be solved, we propose Network Gravity-
Similarity Decreasing Transfer Algorithm (NG-SDTA) to solve this proplem by
extending variational graph auto-encoders (VGAE) [9] and proposing a novel
influence maximization algorithm.

The main contributions of this paper are summarized below:

– We propose a novel model, Variational Graph Auto-Encoder with Network
Gravity (VGAE-WNG), which combines variational graph auto-encoder with
a new and effective decoder to predict and supplement the non-observable
part of a network. To our knowledge, we are the first to incorporate link
prediction in a partially observable network to aid in solving the influence
maximization problem.

– We design a novel algorithm named Similarity Decreasing Transfer Algorithm
(SDTA). When evaluating the reachability of a node’s influence on other
nodes, it takes into account the influence of the similarity on the transmis-
sion of information and the probability of successful information transmission
decreases with the increase of link length.

– The experimental results of different scale networks shows that our method
can achieve almost the same impact maximization effect when it has only
partial network structure and other algorithms have complete network struc-
ture.

The organization structure of the remaining content is as follows. In Sect. 2,
We exhibit notations used in this article, and some research work related to IM
problem and link prediction are introduced. In Sect. 3, we explain the concepts of
influence maximization and variational graph auto-encoders. Section 4 presents
our method for addressing the IM problem. In Sect. 5, we have experimented
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on multiple networks and verified that our proposed methods can effectively
solve the influence maximization problem under a partially observable network.
Finally, we conclude and look forward to this paper in Section 6.

2 Preliminaries and Related Work

2.1 Notations and Preliminaries

All notations and meanings used are displayed in Table 1.

Table 1. Notations

NotationDefinition

G(V, E) Donote a graph
V The set of all nodes
E The set of all edges
p The propagation probability of each edge
S Influence Seed Node Set
σ(S) The size of the set of nodes that S can influence
A Adjacency matrix
X Initial eigenvector
Z The latent matrix
zi Eigenvector of Node i

Wi The i-th layer weight matrix
μ Matrix of mean vectors
log σ2 Matrix of variance vectors

Influence Maximization Problem Compared with traditional social net-
works, a MSN covers various types of networks and has become a popular social
communication platform that people often use [10]. In the MSN, users partici-
pate in virtual social networks through mobile devices, and users with similar
interests communicate and interact on this platform [11]. Therefore, the social
behavior and relationships composed of users’ own behavior and the communi-
cation with other users can be used to define the structure and interaction of
users with their related organizations [12].

In MSN, the structure is typically modeled using G = (V,E). Each node
represents an individual participating in the network, and V is a collection of
these nodes. Edges represents a certain relationship between two nodes, and E
represent the set of edges.

The way to solve the influence maximization problem is to find the seed node
set S, so that the number of nodes influenced by S under a specific diffusion
model and its rules is maximized. The expected value of the quantity activated



Influence Maximization in Partially Observable Mobile Social Networks 241

by S is denoted by σ(S). Above all, the following defines the IM problem. The
following fomula expresses this optimization problem:

S = argmaxσ(S)

Given a graph G = (V,E) and seed node set size k, select k nodes to join
S to maximize their influence spread under a specific diffusion model, that is,
maximize σ(S).

In the diffusion models, selects a set of initial nodes for activation, and the
remaining nodes in the network are activated through the propagation informa-
tion of these nodes. Many diffusion models are designed to study the influence
maximization problems, of which two models are widely used: Independent Cas-
cade Model (IC) and Linear Threshold Model (LT) [7].

In the IC model, the node activated at time t only has one chance to try to
activate the unwanted neighbor borrowing points at t+1 time, the probability of
successful activation is usually used p to represent, this behavior is independent.
Each node in the LT model has multiple opportunities to activate neighbor nodes.
The change of the node from unactivated to the activation state is related to
activated in-degree nodes. The difficulty of each node activation is randomly
generated, each node has an activation threshold θ ∈ (0, 1), and the behavior of
the activated node is not independent. For an inactive node v, when the sum of
the in-degree node’s influence on it is greater than θ, node v becomes the active
state. Our algorithm focuses on influence maximization under the IC model.

Variational Graph Auto-Encoders Graph auto-encoder (GAE) [9] is an
unsupervised model that applies autoencoders to graph data. VGAE combines
variational Bayes and GAE to generate a new model. A typical VGAE consists
of two parts:

• A graph convolution neural network (GCN) [13] encoder: the inference
model constructed by two GCNs is used to design as a encoder, the encoder
is used to capture potential low-latitude vectors for each node in the network.
which is used to:

q(Z | X,A) =
∏N

i=1 q (zi | X,A), with q (zi | X,A) = N (
zi | μi,

diag
(
σ2

i

) )

• An decoder: generate a new adjacency matrix A based on the vector
obtained by the encoder:

p(A | Z) = ∏N
i=1

∏N
j=1 p (Aij | zi, zj), with p (Aij = 1 | zi, zj) = σ

(
z�
i zj

)

Whether there is an edge between two nodes is measured by the cosine sim-
ilarity of the vector between i and j.

2.2 Related Work

Influence Maximization IM hopes to identify a nodes set that can maxi-
mize their ultimate impact under a specific network propagation model. Kempe
et al. [7] proposed a greedy algorithm: SimpleGreedy to solve IM problem, and
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proved that the error between this algorithm and the optimal solution is approx-
imately

(
1 − 1

e − ε
)
. Shang et al. [14] designed IMPC, an IM framework built by

mining the potential among neighbors in community networks. Many heuristic
algorithms, such as degree centrality [15], closeness centrality [15], betweenness
centrality [16], etc., measure the influence of nodes according to centrality, and
select the largest top k as seed nodes. Zhang et al. [17] integrated ITÖ algorithm
into PSO algorithm. They also proposed a modal-based influence evaluation
algorithm that combined subgraphs and social attributes [18]. Li et al. [19] pro-
posed the layered gravity bridge algortihm (LGB) to solve IM problem. Evaluate
the influence of nodes by introducing the gravity equation into the community
detection algorithm by mining the local structure information of the network.
Chatterjee et al. [20] proposed a framework to solve the influence maximization
problem by combining the community algorithm with the Shuffled Frog Leaping
algorithm, so as to maximize the influence propagation of two distances under the
IC model. In order to avoid the problem of overlapping influence between nodes,
Liao et al. [21] considers the multi-hop coverage of nodes, and introduces the
statistical physics method combined with the search for influential seed nodes.

All the above work is focused on the assumption of a complete network
structure. However, in fact, it is difficult and costly to obtain this topology, so
these works are inconsistent with the real network, more and more scholars are
attracted by the problem of maximizing influence in the absence of network
structure. Eshghi et al. [22] shown that it is NP hard to solve the IM problem in
the case of lack of network structure, and proposed an agent’s new computational
efficient seed selection approximation algorithm, an analytical guarantee was
provided for the algorithm’s performance. Stein et al. [23] thought that influential
people usually want to spread their information outside the known network, and
proposed some heuristic algorithms to select nodes located at the network border
to maximize the impact of the entire network.

Link Prediction Link prediction is a technique used to understand the rela-
tionships between nodes in a network and determine whether unconnected nodes
will form connections in the future. This allows us to analyze network topology,
predict unobserved structure of the network, and dig deeper into the network
as a whole. Link prediction methods can be roughly summarized into two cate-
gories: network-based topological similarity and characteristic vector similarity,
which involve comparing the network structure and feature vectors of the nodes.

The similarity of network neighbors has been widely used to solve the problem
of link prediction because of its low computing complexity and high interpre-
tation. [24]. Ghorbanzadeh et al. [25] extended the method, combined neighbor
similarity with authority and hub, proposed a new prediction method according
to the structure of co-neighbors between nodes and the motif where the node is
located. Aghabozorgi and Khayyambashi [26] obtained triad similarity by calcu-
lating the number of motifs jointly participated by nodes, and proposed a new
method by combining similarity of neighbor and triad similarity between nodes.



Influence Maximization in Partially Observable Mobile Social Networks 243

The network representation learning method aggregates and extracts the
network topology information and the attribute information of the nodes, so as to
obtain the vector representation of the nodes in the low-latitude space, where link
generation is determined based on the vector distance between nodes. DeepWalk
[27] uses random wandering to obtain the local neighborhood structure of a node,
abstracts the wandering path as a phrase in the article, and obtains the feature
vector of the node. Graph Auto-Encoder (GAE) [9] and Variational Graph Auto-
Encoder (VGAE) [9] are both Graph Neural Network (GNN) based methods.
Both models use GCN as the encoder to aggregate network topology information
and attribute information. Xiao et al. [28] builds a new link prediction model
for solving graph publishing privacy problems.

While there have been numerous studies on influence maximization, there is
a lack of research on this topic in the absence of a network. The research work
in this paper aims to maximize the influence of partially observable networks by
exploring the underlying structure of the network.

3 Constructions of NG-SDTA

In this section, we introduce our proposed method, named Network Gravity-
Similarity Decreasing Transfer Algorithm (NG-SDTA), which comprises two
main parts. We first introduce a new general decoder: the network gravity equa-
tion, which is used to improve variational graph autoencoders to form a new
model. Secondly, we develop a new algorithm to assess the influence of nodes.
An overview of our proposed method is depicted in Fig. 1.

Fig. 1. Overview of the proposed methods.

As shown in Fig. 1, firstly, input partially observable MSN into the varia-
tional graph autoencoders wtih network graph to obtain the predicted graph
through the link. Then, use similarity decreasing transfer algorithm to calculate
the predicted graph to obtain the final Top k nodes form a seed node set.



244 Z. Xu et al.

3.1 Variational Graph Auto-Encoders Wtih Network Gravity

According to the universal law of gravitation [29], all particles in the universe
attract each other due to a force known as gravity. The larger the quality of the
two particles, the greater the gravity of each other, and the farther the distance
between the particles will cause the gravity between particles to weaken. The
formula of gravitation is as follows [29]:

Fm1m2 = G
m1m2

r2
(1)

m1 and m2 represent the mass of the object, r represents the distance
between the objects, and G represents the gravitational constant. Theoretically,
the greater the gravitational force between two objects, the closer the distance
between them will be. This theory also applies to MSNs. Baek and Kim [30] found
that the more similar two people are, they will communicate with the other more
comfortable. Therefore, in MSNs, the higher the similarity between two users,
the higher the possibility of communication. We abstract the similarity between
users as the product of the mass of objects in the gravitational equation, and
use the number of hops between two users as the distance to formulate Network
Gravity Equation:

Fij = Gn
zizj
r2ij

(2)

The Gn represents the gravitational constant of the network itself. Different
networks have their unique properties, we set Gn as a parameter that can be
learned and obtained through training. Based on VAGE, we use the Network
Gravity Equation as a decoder to form a new model Variational Graph Auto-
Encoders with Network Gravity (VGAE-WNG).

3.2 Similarity Decreasing Transfer Algorithm

In the process of transmission, the influence presents a decaying trend. Christakis
and Fowler [31] found that the spread of influence was limited to a certain range,
and believed that the distance of propagation would generally not exceed three
hops. When two users have similar mutual friends, the two users may establish
a good relationship [24]. Considering the impact of node similarity on influence
propagation, and the decreasing influence in propagation, we designed a novel
algorithm named Similarity Decreasing Transfer Algorithm (SDTA).

The similarity calculation between nodes is obtained by the following formula:

Wvivj
=

Nbrvi
∩ Nbrvj

Nbrvi
∪ Nbrvj

(3)

where Nbri represents the first-order neighbor node set of node i, Wij rep-
resents the first-order neighbor similarity between nodes i and j.

Communication between two nodes can be achieved through multiple paths,
as illustrated in Fig. 2:
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Fig. 2. Paths between two nodes.

As shown in Fig. 2, We can observe that there are 3 different paths between A
and F , the probability that A affects F from each path is different, the possibility
of all path propagation should be considered. From the Fig. 2, we can observe
that the probability of affecting the F node through the ABF path is 0.005,
the probability of successfully influencing the F node through the ACF path is
0.001, and the probability of successfully influencing the F node through the
ADEF path is only 0.00008, which is almost impossible to activate the F node
through this path. Therefore, such low probability paths should be ignored. At
the same time, since the influence shows an attenuation trend in the process
of transmission, and whether it can influence success is is positively correlated
with the similarity between nodes. Above all, we designed SDTA to calculate
the influence of nodes.

InfP1vivj
= Wviva

∗ Wvavb
∗ . . . ∗ Wvkvj

(4)

Infvivj
=

n∑

k

InfPkvivj
(5)

STDAvi
=

∑

j∈V

(Infvivj
> θ?1 : 0) (6)

The Eq. 4 is used to calculate the propagation probability of node vi to node
vj on the path P1. The propagation probability decreases along the similarity
product between nodes in the path. Add up all path propagation probabilities
to get the sum of node vi to node vj propagation probabilities as in Eq. 5. In
Eq. 6, if the influence probability of node vi on a certain node is greater than θ,
the node is treated as a true node that can be influenced by vi, and the influence
of vi is increased by 1. On this basis, the algorithm computes the propagation
probability of vi to other nodes and counts it as the sum of the influence of vi.
The complete algorithm is presented below:

The algorithm first evaluates the similarity between two connected nodes,
and then calculates the nodes’ influence according to the formula. After that, all
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Algorithm 1. Similarity Decreasing Transfer Algorithm.
Require: graph G(V, E), nodes N
Ensure: influence node set S
1: for each edge e do
2: For nodes vi and vj on edge e, Wvivj =

Nbrvi∩Nbrvj
Nbrvi∪Nbrvj

3: end for
4: for vi ∈ N do
5: STDAvi =

∑
j∈V (Infvivj > θ?1 : 0)

6: end for
7: Sort all nodes in descending order according to SDTA
8: pick the nodes with the highest rank as a seed node set S
9: return S

nodes are arranged in descending order of influence, and the top-ranked nodes
form the influence seed node set.

The algorithm can be divided into three parts based on its time complexity.
The first part is to calculate the propagation probability between nodes, and
the cost is directly proportional to the number of edges. Therefore, the time
complexity is O(e). The second part is to calculate the number of possible prop-
agation paths from a node to any third-order neighbor node. The time cost is
related to the number of third-order neighbor nodes of each node, which can be
represented as O(kr), where kr represents the number of third-order neighbors
of node r. Finally, the influence of all nodes is sorted with a time complexity of
O(n).

4 Experimental Evaluation and Results

Through experiments on different networks to prove the performance of the
method we put forward. The experiment is divided into two parts. The first part
is used to verify that VGAE-WNG has better prediction performance. The sec-
ond part is the influence diffusion experiment, which proves that our method can
solve the influence maximization problem under partially observable network.

4.1 Link Prediction

We used two publicly available real-world datasets (Cora[32] and Citeseer[32])
for link prediction experiment, both of them are citation networks composed of
mutual citations between scientists. The relevant information of the datasets is
shown in Table 2.

We conducted a comparative analysis between the proposed VAGE-WNG
method and two classic graph neural network models, GAE and VGAE, which
are widely used for link prediction due to their excellent prediction performance.
We randomly selected 10% of the dataset as the validation set and another 5%
as the test set. The three models were trained on the remaining incomplete
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Table 2. Network Datesets for Link Prediction.

Dateset #Nodes(|V|)#Edges(|E|)Type

Cora 2708 5429 Citation
Citeseer3327 4732 Citation

data, without the use of node attributes and initialized with weights. The Adam
optimization algorithm [33] was employed for iterative training, and the number
of training iterations was set to 200 with a learning rate of 0.01. The experimental
results are presented in Table 3.

Table 3. Link Prediction on Networks.

Cora Citeseer

Method AUC AP AUC AP
GAE 84.3 ± 0.0288.1 ± 0.0178.7 ± 0.0284.1 ± 0.02
VGAE 84.0 ± 0.0287.7 ± 0.0178.9 ± 0.0384.1 ± 0.02
VGAE-WNG85.2 ± 0.0287.5 ± 0.0281.7 ± 0.0285.3 ± 0.02

The results of the link prediction task on the datasets show that VGAE-
WNG consistently outperforms other models on various metrics. It shows that
compared with the simple cosine similarity calculation, it is more reasonable to
consider the distance of users in the network in our scheme, and we describe a
certain property that may exist in the network by mining the potential gravity
of the network, which also helps to predict the relationship between users does it
exist. Specifically, VGAE-WNG achieved the highest performance on all metrics,
demonstrating the effectiveness of our proposed model for link prediction.

4.2 Influence Maximization

To evaluate the performance of our proposed influence evaluation scheme, we
compared our algorithm with four other algorithms on three different datasets:
Facebook [34], formed by collecting information about users using Facebook;
LastFM Asia [35], which was collected from the public API and contains a net-
work of relationships between Asian users; and ca-HepTh [36], a cooperation
network from the ARXIV electronic magazine collection that includes cooper-
ation between author papers studying the theoretical category of high-energy
physics. The statistical information for these datasets is shown in the (Table 4).
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Table 4. Network Datesets for influence maximization.

Dateset #Nodes(|V|)#Edges(|E|)Type

Facebook 4039 88234 Social Network
LastFM Asia7624 27806 Social Network
ca-HepTh 9877 25998 Collaboration Network

We compare with 4 algorithms to verify the effectiveness of SDTA in evalu-
ating node influence, each algorithm selects 50 seed nodes to form the node set.
The relevant information of the algorithms are as follows:

– Degree Centrality(DC) [15] : Degree centrality measures the sum of how well
a node is connected to other nodes in the network.

– Eigenvector Centrality(EC) [37] : Eigenvector centrality determines the influ-
ence of nodes based on the number of their neighbors and the importance of
those neighbors in the network. If a node has neighbors with high importance
in the network, its own importance will also increase.

– Maximum Influence Arborescence(MIA) [2] : MIA considers the influence
propagated through local arborescences in a network.

– Reversed Node Ranking (RNR) [38] : RNR ranks the importance of nodes and
selects seed nodes through ranking information. Each time choose nodes, con-
tinue to delete the currently selected nodes and its neighbors in the network,
and continue to select seed nodes at the remaining network nodes.

Since the propagation of information in the network often does not exceed
three degrees [31], we only consider the influence of a certain node in its two-hop
neighbor node set, thereby reducing computational overhead. The propagation
probability between two nodes is proportional to the similarity, so the propa-
gation probability, which is set to Wij (calculated by Eq. 3). The propagation
probability of edges in the IC model is generally set to 0.1 [2], and the influence
of nodes can typically spread to four hops. Therefore, we set θ to the fourth
power of 0.1 (0.0001).

Partially Observable Network In this part, we compared the influence diffu-
sion effect that SDTA and other algorithms can achieve under some observable
networks, and the experimental data set retains 90% of the structure. The results
are shown in the figures.
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Fig. 3. Comparison of influence spread of the five algorithms on partially observable
network.
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Fig. 3. (continued)

In figures, we can observe that SDTA had good performance in all three
networks. In the LastFM Asia network, SDTA is obviously slightly inferior to
DC and RNR in terms of propagation speed due to MIA and EC, but the final
propagation range is comparable to DC, and RNR performs the best. Both
SDTA and DC have excellent performance in the early stage in facebook, and
the final spread range of both SDTA is slightly better, while MIA shows the
best spread effect and RNR and EC perform poorly. In the ca-HepTh network,
the RNR algorithm cannot obtain enough seed node sets due to the inability
to converge, and DC has the best performance in the propagation performance,
SDTA is the second, MIA has the same propagation range as SDTA at the end,
and EC has the worst performance. Both MIA and DC only start from the point
of view of node degree, ignoring the influence of the distance of information in
propagation, while RNR considers the problem of overlapping influence, but the
given convergence conditions are unreasonable and cannot converge. To sum up,
SDTA has excellent and stable performance in the three networks, indicating
that it is more reasonable for us to consider multiple paths to evaluate the
possibility of information dissemination.

Entire Network In this section, we combined VAGE-WNG with SDTA to
carry out influence propagation experiments under the condition that only 90%
of the structure of the network is partially observable, and compared with
other algorithms under the condition of complete network structure. We first
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performed complete network structure prediction by VAGE-WNG with only
90% of the network, and later used the SDTA algorithm to select the seed node
set in the predicted network for influence propagation experiments.

Fig. 4. Comparison of influence spread between missing network structure and other
algorithms without missing network structure.
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Fig. 4. (continued)

In LastFM Asia network, RNR is also unable to obtain the complete set
of seed nodes due to non-convergence. MIA has a slower propagation speed
in the early stage but achieves the same propagation range as SDTA, DC is
similar to SDTA in terms of propagation speed and inferior to SDTA in terms
of final propagation range. SDTA has a slightly lower propagation speed than
DC and MIA in the Facebook network, but is comparable to MIA in terms
of final propagation range. In the ca-HepTh network, DC and MIA have the
best propagation speed and the final propagation range is similar, SDTA is
weaker than the first two, and RNR is worse. EC performs the worst in all three
networks.

Experimental results showed that our scheme is able to achieve comparable
influence propagation with a partially observable network structure as other
algorithms that have a complete network structure.

5 Conclusion

In this paper, we abstracted it as a combination of the link prediction problem
and the node influence evaluation problem to address the problem of how to
maximize influence in real-life situations where the complete structure of the
network cannot be observed. We first develop a new decoder for VGAE to achieve
better link prediction. Then a new node influence assessment method is proposed
to obtain the seed node set. Experimental results show that our scheme has
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comparable performance to the best influence propagation effect achieved by
other algorithms with a complete network structure.

In future work, how to optimize the model to achieve better link prediction
results is the next focus of our research. Besides, the study of how to achieve the
problem of maximizing the influence of unknown network structure will also be
our research goal afterwards.
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